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Abstract--In this paper we use the boundary integral method to simulate the dynamics of a liquid drop 
levitated by electrostatic force. Our numerical code reproduces the Rayleigh limit, the Taylor limit and 
the stable equilibrium shape of a leviated drop obtained by previous authors. It also reveals the mechanism 
by which a levitated drop might breakup. Using this code, we have obtained the natural frequencies of 
the drop under various levitation conditions. We have also examined the effect of the electrostatic field 
on the resonant interactions between the modes. We found that the presence of the electric field enhances 
the modal interactions; modes which otherwise would not interact become coupled to each other. 
Calculations of the dynamics of a levitated drop under a time-periodic electric field indicate that the main 
resonance occurs when the frequency of the electric field is near the free oscillation frequency of the 
fundamental mode. 
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1. I N T R O D U C T I O N  

With the development of  techniques for levitating a large drop by electrostatic forces (Rhim et  al. 

1987), new experiments on drop dynamics and related applications in various fields have become 
possible. In the meantime, a significant amount of  theoretical work on the dynamics of  charged 
drops in an electric field has also been done in the last decade. One topic has been numerical 
computation of  the drop equilibrium shape, including work done by Miksis (1981), Adornato & 
Brown (1983), Basaran & Scriven (1989a, b) and Pelekasis & Tsamopoulos (1990). Another set of  
studies has been concerned with the dependence of drop dynamics on the electric charge on the 
drop, or on the magnitude of  the applied electric field. These latter studies have used primarily 
asymptotic expansions coupled with domain perturbations from a spherical base case. Specific 
examples include the work of  Feng & Beard (1990, 1991a, b) and Kang (1993), who studied the 
dependence of drop oscillation frequencies on the magnitude of the electric charge or the applied 
electric field. Tsamopoulos & Brown (1984) studied resonant coupling between the normal modes, 
while Tsamopoulos et  al. (1985) and Natarajan & Brown (1987) studied drop breakup due to the 
electric charge or electric field. Due to the perturbative nature of the approach, these analyses and 
results are typically applicable only in some small domain of parameter space. 

Interestingly, an analytical approach based on a spheroidal base case has been very successful 
in predicting the drop equilibrium shape (Basaran & Scriven 1989) and natural frequencies of  the 
fundamental mode (Brazier-Smith et  al. 1971) for cases where the actual shape is not a near sphere. 
The spheroidal approximation method (Taylor 1964) assumes that the shape of the drop is 
spheroidal and applies boundary conditions only at the poles and the equator in order to determine 
the aspect ratio. Recently, Kang (1993) has used the spheroidal approximation to study drop 
breakup in an axisymmetric, time periodic electric field with fore-aft symmetry. 

The spheroidal approximation yields concise yet quite accurate results for the equilibrium shape 
and resonance frequencies for drops with spheroidal symmetry. However, it cannot be applied to 
study the dynamics of a levitated drop because the latter does not have m i r r o r  symmetry about 
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the equator and its shape cannot be approximated by a spheroid. Thus, apart from the asymptotic 
results of Feng & Beard (1990), fundamental questions about the dynamics of a levitated drop, 
such as the resonance frequencies and energy transfer mechanism between modes, remain to be 
answered. 

In this paper, we use numerical simulations to study the dynamics of an electrostatically levitated 
conducting liquid drop under normal gravitational conditions. The numerical method we use is the 
boundary element method. We reproduce previous results with regard to the Rayleigh limit, the 
Taylor limit and the drop equilibrium shape. In addition, we show that the time evolution of the 
drop dynamics is strongly dependent upon the initial shape of the drop. Our calculation of the 
natural oscillation frequencies of a levitated drop extend existing perturbation results to cover all 
stable parameter values. We also conduct a preliminary study of the drop dynamics in the presence 
of a time-periodic electric field. 

The dynamics of a liquid drop in an electric field is an interesting fundamental topic in the physics 
of fluids. Beyond this, an understanding of non-linear phenomena can have an important impact 
on implementation of material processing techniques in microgravity. Furthermore, the latest 
research activities have also been stimulated by possible application in electrospray ionization 
(Gomez & Tang 1994). 

2. MATHEMATICAL FORMULATION 

We consider an axisymmetric conducting drop of volume (4re/3)R 3, density p, uniform interfacial 
tension a and net electrical charge Q*, levitated in a tenuous insulating medium by an external 
uniform electrostatic field E* applied in the opposite direction to the gravitational acceleration g. 
The insulating medium has electric permittivity Em- We assume that the flow inside the drop is a 
potential flow with velocity potential qS*. Let E* and V* denote the electric field and the 
electrostatic potential. In a cylindrical coordinate shown in figure I, we choose R, ~ t r )  and 

Z 
I _ ~ A ~  The north pole 

~E 

Figure 1. Coordinate axes. 
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Table 1. Non-dimensionalization used in various papers 
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Characteristic Feng & Basaran & Tsamopoulos Lundgren & 
variables Beard (1990)  Scriven (1989) & Brown (1984) Mansour (1988) 

I c (pR3/ff) 1/2 - -  (pR3/ty) 1/2 (pR3/2a) 1:2 
I~ R R R R 
Pc a/R a/R 2a/R a/R 
E~ (a /EmR ) 1/2 (2a /~_mR ) j/2 (a /4nEmR ) I/z - -  
Q¢ (em aR 3)1/2 (2eo-R 3)1/2 (4hE maR 3)1/2 

a / R  as characteristic length, time and pressure. Following the same non-dimensionlization as in 
Feng & Beard (1990), we let: 

E = E * ~ ,  Q = O*/x / (EmaR3) .  

These non-dimensionalizations are compared with those of others in table 1. 
The equation governing the hydrodynamic field for (z, r) within the drop is 

= 0  [1] 

The equation governing the electric field for (z, r) outside the drop is 

v 2 v = 0 [2] 

On the drop surface, we have the normal stress balance: 

0q~ 1 1 2 
c3t + Bz  + ~ (Vc~) 2 + V . n  - ~ ( V V )  = Apo [3] 

and since the drop is a conductor, the boundary condition for V is 

V =  V o [4] 

where V 0 is a constant. The parameter B, which appears in [3] is the Bond number, 

B = p g R 2 / a  [5] 

which represents the magnitude of the gravity relative to the surface tension force. To gain some 
intuitive understanding, we note that for a water drop at 1 g, with p = 1 g/cm 3, a = 75 dyne/cm 
and g = 980 cm/s 2, a Bond number B = 1 corresponds to a diameter of 5.5 mm. The pressure 
adjustment Ap0 may he time dependent, and is determined from the constraint of  volume 
conservation of  the drop. In addition, we have 

V = - E 0  z at r0 --~ o o  [6]  

and the conservation of the total charge on the drop surface 

- 2r~ ( n .  V V)r ds = Q [71 
0 

We do not write down the kinematic boundary condition for the time being. However, this 
boundary condition will be used to update the free surface in our numerical implementation to be 
discussed in the following. 

3. B O U N D A R Y  E L E M E N T  F O R M U L A T I O N  

We use the well-known boundary integral (boundary element) method in this work. Since the 
governing partial differential equations are simply Laplace equations for both the velocity potential 
and the electric potential, we can use the boundary integral formulation to establish the relationship 
between the two potentials, ~b and V, and their normal derivatives on the boundary, ~b, and V,. 
Our steps are the following. Given an initial shape of  the free surface, we solve an electrostatic 
problem and a potential flow problem using the boundary element formulation. Once this is done, 
we use the normal stress boundary condition coupled with the kinematic boundary condition to 
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update the free surface shape and the velocity potential at the surface. This strategy amounts to 
numerical integration of  the following dynamical systems at each time step: 

= q~tt~ + ~b.nz [8] 

~ = c~,tr + (a.n, [91 

d = - a z  + (Vq )2-V.n+g(VVy [101 

where t = t~i, + t,i, and n = n~i, + n~i, are the tangent and outward normal vectors respectively, i~ 
and i~ are the two unit vectors in the cylindrical coordinates, and V. n is the total curvature of  the 
surface given by 

z ' ( s ) [ z ' ( s )  2 + r'(s)21 - r ( s ) [ r " ( s ) z ' ( s )  - r ' ( s ) z " ( s ) l  
V - n =  

r ( s ) [ z ' ( s )  2 + r ' ( s ) l  3/2 

where s is the arclength measured from the node 1 in figure 1. 
The boundary element formulation for axisymmetric problems is detailed in Brebbia et  al. (1984). 

For  the hydrodynamic problem, it establishes the relationship between the velocity potential and 
its normal derivatives on the boundary. If we discretize the axisymmetric free surface into N -  1 
elements and use linear interpolation to describe values of  4~ and q~, in terms of the corresponding 
values at the N nodes, namely q~, q~2, etc., the boundary element formulation gives us a linear 
system of equations: 

[Ill 

where ~b. = ((~b.)~, (~b.)2 . . . . .  (~b.)u)', ~b = (~b~, q~2 . . . . .  q~u) ~ and matrices G and H depend only on 
the geometry of  the free surface. 

Once the matrices G and H have been formulated for the hydrodynamic problem, only slight 
modification of these matrices is needed in order to adapt them to solve the electrostatic problem, 
because if we write 

V ~ = - E o z  

we can decompose V into 

V = VS+ V °~ 

Obviously V s satisfies the Laplace equation and 

V ~ = 0 

at infinity. 
Since the total electric potential is a constant (denoted by V0) on the drop surface, we have on 

the surface 
V S =  V o - V  ~ 

Now the conservation of total charge gives 

-~-n ds = - Q  +E0 ~ds 

where s is the arclength of the generator of the axisymmetric drop. The linear system of  the 
algebraic equations resulting from the boundary element formulation combined with the conser- 
vation of  total charge allows us to solve for V~ and V0. 

The details of the boundary element formulation are given in Brebbia et  al. and will not be 
repeated here. We comment specifically on the following. 

(1) We have used linear interpolation to represent the free surface and the functions 4, ~. ,  V 
and V,. The disadvantage of  a linear element is that the free surface is not smooth. This leads to 
some difficulty in evaluating the diagonal entries of the matrix H. We avoid such complication by 
calculating the diagonal entries using known properties: 

N 

E nij=0 
j = l  
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for the hydrodynamic problem. This equation can be easily derived by using the heat conduction 
analogy, namely, the flux is zero if the temperature on the surface of a finite body is constant• For 
the electrostatic problem, which is an exterior problem, a similar equation 

N 

j = l  

can be obtained by using the definition of the matrix H, where the superscript signifies the 
electrostatic problem. 

(2) In obtaining the matrices G and H, integration of singular functions is required. While it 
is common practice to cut out a segment on the integration interval to evaluate singular integrals 
analytically, we choose to evaluate the singular integrals by using the known nature of the 
singularity. Without loss of generality, we can assume, due to the logarithmic nature of the 
singularity, that 

I: A ,  = f ( x )  d x  = F - ~ 6 ,  - ~ 6 ,  log 6, + 0(6,2) 
n 

Then F gives an approximation accurate up to 0(6,2). If we choose three different values as 6,; 
and numerically evaluate the integral to get A,, the above relation yields three algebraic equations 
for F, e and B- For sufficiently small 6,, the value F gives a good approximation of the singular 
integral. 

(3) The boundary element formulation is a direct formulation in contrast with those which 
assume a vortex layer at the free surface such as the approach of Lundgren & Mansour (1988). 
The difficulty with an indirect formulation, such as the vortex sheet formulation, is that the 
tangential velocity of the free surface is not known for sure because it experiences a jump across 
the free surface. Inaccurate tangential velocities cause boundary points to accumulate at some 
location and remeshing is needed after a few time steps. With our direct formulation, no remeshing 
is needed. 

(4) We have identified an important source for numerical instability. Numerical instability of 
the drop simulation programs has been reported by many authors. Lundgren & Mansour (1988) 
report that the cause of such instability is still unknown. However, we believe that the well-known 
instability of the Runge-Kutta method may be the cause of numerical instability in most of the 
existing drop calculations. 

The instability of the Runge-Kutta method has been studied extensively. To understand this 
instability, let us consider numerical integration of the following simple ordinary differential 
equations: 

.~ = c o y  

))  ~-~ - - ( D X .  

These equations describe the motions of a linear oscillator and the solutions are sinusoidal 
functions. Indeed, sinusoidal functions are what we get from the (fourth order) Runge--Kutta 
method if a "small enough" time step is chosen. However, when the time step At exceeds 2.8/o), 
no matter how small x and y are to start with, we always end up with exponential growth of x 
and y until the computer fails to continue the calculation. 

The instability in the drop problem is associated with the stiff nature of our dynamical systems, 
see Gear (1971). The reason why it occurs in the current drop dynamics problem can be understood 
with some knowledge of the linear analysis of the free surface. If the deviation of the drop shape 
from the spherical shape is small, the dynamics of the drop can be described in terms of linear 
Legendre modes. If we use (xi, yi) to denote the two phase variables of a particular mode with mode 
number i, the strategy of advancing the free boundary is analogous to solving the following initial 
value problem 

21 = f D l y  1 

Yl  ~ - -  C~')I  XI  • 

f c . - ~ f D n y  n 

.Yn ~" - - O ) n X . "  
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Although we are usually interested in the behavior of a few slow modes, the fastest frequency (say 
co~) is still present. Hence the time step for stability should be controlled by the fastest mode. The 
fastest mode present is controled by the number of elements. Hence the more elements we use, the 
smaller the time step allowed by the stability requirement. 

Based on this argument, we can calculate the largest time step for the drop problem with (say) 
100 elements. With this number of elements, we can represent the Legendre modes up to Pi00, which 
has a frequency of 1005/x/2, in the timescale of Lundgren & Mansour (1988). Hence the critical 
time step is 

At = 2.8x/2/1005 = 0.00394 

With our boundary integral program, we have numerically identified the critical time steps for 
stability with n ranging from 20 to 100. The data points are shown in figure 2. The dashed line 
is the theoretical result based on the above argument. Note however that the natural frequency 
of the n th mode is estimated based on small amplitude oscillations from the spherical shape. When 
the shape of the drop is deformed away from the spherical shape, the natural frequency of the 
fastest mode can be significantly different from the above estimate. In addition, when the nodes 
are not evenly distributed, the time step allowed by stability considerations is often smaller than 
the above estimate. 

We comment that the stiff system we encounter here is different from the stiff systems that are 
well treated by some integrators such as Gear's method. In our case, the linearized system has 
eigenvalues with large imaginary parts due to the oscillatory nature of the dynamics. This is in 
contrast with more common stiff systems which are characterized by large negative eigenvalues. 
By choosing sufficiently small integration time intervals (At = 0.005), we can avoid the instability. 
We therefore carry out our numerical integration using a fourth order Runge-Kutta  method. We 
limit the number of surface elements to 40 to insure stability. 

(5) We have attempted to incorporate weak viscous effects in the fluid into our program. We 
tried to accomplish this by including in the computation a vorticity calculation based on partial 
solution of the boundary-layer equations which describe the weak vortical surface layer. The 
solution of the vorticity equation influences the drop dynamics through the inclusion of viscous 

0 . |  - -  
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o . o 0 1  ! l l i I I I I I 
I0 I 0 0  

N u m b e r  o f  e l e m e n t s  

Figure 2. The dependence of the max imum integration time step upon the number  of  elements. The dashed 
line is based on At = 2.8~/2/co n where n is the number  of  elements. The dots are the smallest time steps 

above which the numerical integration is interrupted by instability. 
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terms in the normal stress boundary condition. The details of  such an approach are given in 
Lundgren & Mansour (1988). Unfortunately, further numerical instability is caused by such a 
treatment. Hence our simulation is mostly limited to inviscid drops. Since the equilibrium shape 
of  the drop does not depend on the viscosity, we followed Lundgren & Mansour's treatment 
formally by incorporating just the normal stress contribution of  the viscosity as in Dommermuth 
(1994). 

4. V A L I D A T I O N  OF TH E N U M E R I C A L  CODE 

The computer programs we have developed for this work were checked against some numerical 
and analytical results. Specifically, we have done a simulation of the drop response to an initial 
impulse with the same initial conditions as used by Lundgren & Mansour (1988). For  this purpose, 
our time scale has been adjusted in order to compare to their result. Our results are shown in figure 
3(a)-(c). Figure 3(a) shows the time history of the position of  the top end of  the drop. Figure 3(b) 
shows the kinematic, potential and total energy defined in the same way as in Lundgren & 
Mansour. These results appear to be identical to the results of  Lundgren & Mansour. Figure 3(c) 
shows the equivalent radius of  the drop as a function of time. This is an indicator of whether our 
numerical code conserves the total volume of  the drop. We find that the radius variation is less 
than 0.3%. 

As another check of  our program, we verify that the gravitational force is actually balanced by 
the electrostatic force, as it should be at steady state. In dimensional variables, this requires that 

That is 

4 
E ' B *  = ~ rcpgR 3. 

B = 3 E Q  

in dimensionless variables. If  we choose E = 0.2 and B = 0.6; the necessary charge to maintain force 
balance is 

Q = 47t 

Although at that charge Q = 12.56, the drop is seen to drift slowly upward in our calculations, 
the static balance is achieved if we slightly reduce the charge to 12.54. Figure 4(a) and (b) shows 
the positions of  the uppermost end of  the drop as a function of  time for the above two cases. The 
motion of the top end of the drop (the north pole) is composed of  a contribution due to shape 
oscillation, and a slow drift upward in figure 4(a) [downward in figure 4(b)]. 

The natural frequencies of  a charged drop have been calculated by Lord Rayleigh (1882). In our 
timescale, 

co n2=n(n _ l)(n + 2) 1 -  [12] 

where 

Q ~) = 4n x / ~  + 2) 

and QR = Q~) = 8re is the so-called Rayleigh limit. This result can be used as a further check on 
the accuracy of  our numerical program. By carrying out numerical integrations for a certain 
amount  of  time starting with an almost spherical drop with a small P2 perturbation of  the shape, 
we can obtain the frequency of  small amplitude oscillation by counting the number of  peaks in 
a given time interval. In figure 5, the curve corresponds to the theoretical value for co 2 according 
to [12]; the dots correspond to numerically computed values using our program. 

5. 

& 

THE E Q U I L I B R I U M  SHAPE AND S T A B I L I T Y  OF AN E L E C T R O S T A T I C A L L Y  
L E V I T A T E D  L I Q U I D  DROP 

The equilibrium shape of  an electrostatically levitated liquid drop has been studied by Adornato 
Brown (1983) using asymptotic analysis and the finite element method. Even though our 
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Figure 4. The displacement o f  the drop north pole for E = 0.2, B = 0.6. (a) The drop is seen to drift 
upwards for Q = 12.56 and (b) the drop drift is downwards for Q = 12.54. 
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Figure 5. The natural frequency of the P2 mode as a function of the charge on the drop. The line is based 
on [12] and dots are from our numerical calculation. 

numerical code is best geared to study the dynamics of  the drop, it is possible for us to study the 
equilibrium shape of  the drop by including a viscous normal stress term in the dynamic boundary 
condition and carrying out long time integration until the drop reaches a steady state. Since the 
equilibrium shape of  the drop is independent of  viscosity, this non-rigorous treatment of  viscous 
effects does not affect our result for the equilibrium shape. 

Comparison between our result and that of  Adornato & Brown is satisfactory. For example at 
E = 0.3385 (corresponding to E = 1.2 in the nomenclature of  Adornato  & Brown) the amplitude 
of  the Legendre modes for mode numbers from zero to seven are listed in table 2. Note that the 
amplitudes of  all modes with odd mode numbers are zero in our result. They are not zero according 
to Adornato & Brown. Since the mirror symmetry about the equator of  the drop is preserved if 
the drop is subjected to an electric field alone, all odd modes should have zero amplitude. In this 
aspect our result is more accurate than that of  Adornato & Brown. 

In addition to reproducing the results of  Adornato & Brown, we have done a systematic study 
of  the dependence of the drop equilibrium shape on the levitation parameters (E, Q and B). We 
use the length of  the long axis (i.e. the symmetry axis) to characterize the drop deformation. Since 
all lengths have been non-dimensionalized by the radius of  an equal volume spherical drop, it is 
convenient to divide the drop length by two. We denote this dimensionless quantity as a. If  the 
Bond number is not zero, the typical equilibrium shape of the drop does not exhibit mirror 
symmetry about  the equator. It is because of this that we use the length of the drop rather than 
the Taylor deformation measure involving the axis ratio as an indicator of  shape deformation. 
Figure 6 shows the half length of the symmetry axis as functions of  the electric field for various 
values of  Q. For  fixed Q, the deformation increases as the electric field strength increases. The rate 
of  increase accelerates and the curves in figure 6 approach vertical tangents as the strength of the 
electric field increases. Therefore, for each fixed Q, there exists a corresponding maximum value 
of E, above which no stable equilibrium shape of the drop exists. For Q = 0, this maximum is the 
Taylor limit, which is 0.451 based on our calculation. 

As the electric charge increases, the maximum electric field for the existence of a stable 
equilibrium shape decreases, and the maximum achievable deformation of the drop also decreases. 
Since the existence of a stable equilibrium shape dictates whether a drop can be stably levitated, 
we plot the maximum electric field for various Q. This is represented by the data points shown 
in figure 7. The lower left region below these data points corresponds to regions where a drop can 
be stably levitated. We also show curves corresponding to constant Bond numbers, 

B - 3 E Q  

47r 

Table 2. Legendre modes at equilibrium 

Mode number 0 ! 2 3 4 5 6 7 
Adornato & Brown 0.997 - 0.002 0. l ! 3 0.020 0.016 0.006 0.003 0.001 
This work 0.997 0.000 0.111 0.000 0.009 0.000 0.001 0.000 
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Figure 6. Dependence of the drop deformation at the equilibrium on the strength of the electric field as 
functions of the electric charge. The deformation of the drop is represented by the half-length of the 

symmetry axis. 

from B = 0.2 to B = 1.0. Based on that, we conclude that the maximum drop size we can stably 
levitate has a Bond number near 0.9. This suggests that drops with Bond number approaching 0.9 
become difficult to levitate. Roughly speaking, optimum parameters for levitating a drop are that 
E and Q are near 50% of the Taylor limit and the Rayleigh limit, respectively. 

6 

Q 5  

4 

3 

2 

1 

0 

I \ • \ .8--0.8 

B=0.2 

0 .1  0 . 2  0 . 3  0 . 4  
E 

Figure 7. The region where the stable equilibrium exists. The region is defined by the square dots. 
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A liquid drop can be levitated using various combinations of the charge and the electric field. 
It is thus interesting to know how the equilibrium shape of the drop depends on the charge and 
the electric field. For that purpose, we have done computations at a fixed Bond number (0.6) for 
various values of Q and E. The results of these calculations for several representative cases are 
shown in figure 8. We observe that a combination of large surface charge and small electric field 
leads to less distortion of the equilibrium shape from that of a sphere. A combination of small 
surface charge and large electric field, on the other hand, leads to a large distortion of the shape; 
furthermore, the loss of mirror symmetry about the equator is more apparent. 

It is important to realize that because of the non-linear nature of the drop dynamics problem, 
the drop dynamics depend strongly on initial conditions. As an illustration, for Q --0, E = 0.45 
is below the Taylor limit. Hence a stable equilibrium shape exists. However, a drop whose initial 
shape is a sphere will become unstable if subjected rapidly to an electric field of this strength. This 
is shown in figure 9 which is a plot of ti versus a. We observe that the two poles of the drop develop 
very large velocity and the motion becomes unbounded. For this reason, it is important to recognize 
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Figure 9. For E = 0.45, which is below the Taylor limit, the drop develops a large velocity at the two 
poles. The time rate of change of the half-length of the symmetry axis, a, is plotted against a. 

that the maximum E values in figures 6 and 7 have been obtained by incrementing through small 
steps in E, beginning from E = 0. In the above example, the stable equilibrium can be reached only 
if we start our calculations from a spheroid that is very close to the maximum deformation, with 
a = 1.40. 

For  levitation parameters  and initial conditions outside the region of stable attraction to the 
steady state solution, the drop develops large velocities at the poles. The shape evolution of a drop 
as time progresses from an initial spherical shape for E = 0.45 and Q = 0 is shown in figure 10. 
We observe that because of  large velocities at the two poles, the drop develops sharp corners at 
these points. Further integration of  the drop dynamics is aborted because our boundary integral 
formulation cannot handle the impending singularity in curvature at the two poles. When both the 
electric charge and the electric field are present, the mirror symmetry about  the equator of  the drop 
is broken. The evolution of  the drop shape from a spherical initial shape for E = 0.4, Q = 2~ and 
B = 0.6 is shown in figure 11. Now the drop develops a sharp corner only at one of  the two poles 
as if the drop is suspended in the gravity field by a string attached to the north pole. 

Since our code is a dynamic one, among all possible equilibrium shapes only stable equilibrium 
shape can be obtained. Due to the axisymmetry restriction of our program, we will also obtain 
equilibrium shapes that are stable under axisymmetric perturbation but unstable under non- 
axisymmetric perturbation. For  instance, in the absence of an electric field, an oblate axisymmetric 
equilibrium shape has been found for charges above 8n, the Rayleigh limit. However, these 
axisymmetric oblate shapes have been shown to be unstable under non-axisymmetric perturbation; 
see Tsamopoulos  et al. (1985). 

6. O S C I L L A T I O N  F R E Q U E N C I E S  OF T H E  F U N D A M E N T A L  M O D E  OF AN 
E L E C T R O S T A T I C A L L Y  L E V I T A T E D  D R O P  

For  an electrostatically levitated drop, the presence of  the electric charge and the electric field 
both have an effect on the oscillation frequencies. From [12], we see that the presence of  the electric 
charge alone reduces the natural frequencies. The presence of the electric field also tends to reduce 
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the na tu ra l  frequencies. In  addit ion,  due to the non- l inear  na ture  of  the problem,  the free oscillation 
frequencies also depend on  the amplitude of  oscillation. In  this section, we report  computa t iona l  
results for the oscillation frequencies of the fundamenta l  mode for various levitat ion parameters  
and  oscil lation ampli tudes.  

We compute  the free oscillation frequencies of  the drop by carrying out  a time integrat ion for 
drops with spheriodal  initial  shapes and  fixed values of  E and Q (hence B). We ob ta in  the periods 
of  oscil lation by calculat ing the total time for a certain n u m b e r  of  oscillations. To  characterize the 
ampl i tude  of  oscillation, we could have used the ampli tudes of the Legendre modes. However,  since 
the length of  the symmetry axis is more easily measured in experiments,  we use a - 1 at t = 0 as 
the parameter iza t ion  of oscillation amplitudes.  We also limit our  computa t ion  to l a - 11 < 0.5 since 
(strictly speaking) the mot ion  for larger initial a is no t  periodic due to energy transfer to the higher 
modes.  Wi th  this l imita t ion on the ampli tude,  the mot ion  can be reasonably  regarded as periodic 
(ampli tude var ia t ion  within the first 7-10 cycles is less than 20%). For  some levitat ion parameters,  
s t rong modal  coupl ing occurs. As a result, the free oscillation ampl i tude  varies substant ia l ly  due 
to the energy transfer between modes. In these cases, accurate frequency in format ion  could no t  
be obtained.  This modal  coupling will be further examined in the next section. 

The results of  our  comprehensive calculations are shown in table 3. Missing entries in table 3 
are due to the fact that  for those levitat ion parameters  and  oscillation ampli tudes,  the ampl i tude  

Table 3. Frequencies of free oscillation of the fundamental mode 

E Q B a = 1.10 a = 1.20 a = 1.30 a = 1.40 a = 1.50 

0.0 0.0 0.000 2.825 2.797 2.732 2.673 2.605 
2n 0.000 2.721 2.684 2.631 2.579 2.521 
4n 0.000 2.431 2.399 2.350 2.292 2.235 
6n 0.000 1.860 1.829 1.782 1.747 1.691 
7n 0.000 1.347 1.310 1.261 1.202 1.147 

0.1 0.0 0.000 2.789 2.754 2.703 2.631 2.569 
2n 0.150 2.684 2.648 2.602 2.550 2.486 
4n 0.300 2.383 2.344 2.291 2.230 - -  
5n 0.375 2.122 2.087 2.020 - -  - -  
6n 0.450 1.746 1.716 - -  - -  - -  

0.2 0.0 0.000 2.647 2.615 2.562 2.513 2.449 
2n 0.300 2.555 2.528 2.483 2.432 2.368 
3n 0.450 2.415 2.395 2.347 - -  - -  
4n 0.600 2.168 2.140 - -  - -  - -  

0.3 0.0 0.000 2.399 2.380 2.338 2.279 2.207 
n 0.225 2.362 2.347 2.302 2.254 - -  

2n 0.450 2.254 2.228 2.158 - -  - -  
0.4 0.0 0.000 1.787 1.821 1.800 1.754 1.691 

n 0.600 1.677 1.739 1.690 1.638 - -  
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variation of the free oscillations exceeds 20%. There are two causes for this to occur. One is due 
to the mode coupling between the fundamental mode and the higher modes to be further examined 
in the next section. The other cause is the instability of  the drop equilibrium shape. Recall that 
for some levitation parameters the equilibrium shape can be stable with respect to small shape 
perturbations but unstable to large shape perturbations. This is true especially for drops levitated 
by large E. 

Before we conduct analysis of  the data in table 3, we first recall existing knowledge about the 
dynamics of  a liquid drop, since some aspects of  the dynamics of  an electrostatically levitated drop 
are similar to those of  a liquid drop in zero gravity which has been studied by various authors; 
see Basaran (1992) for a recent review of the papers in this area. For a liquid drop in zero gravity, 
the oscillation frequencies of  the fundamental mode are known to depend on the oscillation 
amplitudes. Tsamopoulos  & Brown (1983) obtain, via the asymptotic expansion method, the 
oscillation frequencies of  the fundamental mode. As a function of  the oscillation amplitude E, they 
obtain 

60 = (2) 2 - 0.638~; 2 

where ~o 2 is the frequency of the small amplitude oscillations given in [12] (for Q = 0) and e is the 
amplitude of  the fundamental mode. 

Motivated by the perturbation results of  Tsamopoulos & Brown, we plot the frequencies in table 
3 as functions o f ( a  - 1) 2 for E = 0.0, E = 0.1, E = 0.2, E = 0.3 and E = 0.4. These plots are given 
in figure 12(a)-(e). The straight lines are a linear fit to the data points. Since a - 1 is a measure 
of  the oscillation amplitude, we expect the frequencies to be a quadratic function of a - 1, at least 
for a - 1 small. For  E = 0.0, figure 12(a), we see that the quadratic relationship is accurate up to 
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Fig. 12(a). Caption on p. 112. 
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a = 1.5 (the largest amplitude we have computed) and for Q between zero and 7n (recall that the 
Rayleigh limit is 8rr). The slope based on the linear fit of  the data for Q = 0 is 0.905. Compared 
with 0.638 obtained by Tsamopoulos & Brown, our result is about 30% larger. For E # 0, 
frequencies at large amplitudes cannot be obtained for some values of Q due to modal interactions. 
Otherwise, a linear relationship rather accurately captures the dependence of the frequency upon 
(a - 1) 2. The slopes in all cases are negative indicating that the type of non-linearity for the drop 
is what is often called soft. For E = 0.4, a linear fit to the data points cannot be made since a - 1 
is not a very good measure of the oscillation amplitude due to the large deviation of the equilibrium 
shape from the shape of a sphere. 

In addition to the analytical results of Tsamopoulos & Brown, there are other results that can 
be used to compare with our calculations. The oscillation frequencies of the levitated drop have 
been calculated using asymptotic expansions by Feng & Beard (1990). Based on the formulae given 
in their paper, we obtain the natural frequencies of  the fundamental mode of  an electrostatically 
levitated drop in the following form: 

co = co2(Q)(1 - f ( Q ) E  2) [13] 

where 

9Q~(-48Q4 - 473Q 2 + 491Q~t Q 2) 
f ( Q )  = 28O(8Q2 _ 11Q2)(Q2 _ Q~)2 [14] 

When Q = 0, B = 0, the mirror symmetry of the drop about the equator is preserved, and 
Brazier-Smith et al. (1971) have obtained the oscillation frequency using spheroidal approxi- 
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mations. As noted earlier, the spheroidal approximation treats the drop shape as a spheroid. The 
length of the symmetry axis is thus a function of  time. By imposing boundary conditions at the 
equator or at the poles, a second order ordinary differential equation is thus obtained. The 
oscillation frequency then follows. 

Comparison of our calculations with those of  Feng & Beard and Brazier-Smith e t  al.  are given 
in figure 13(a)-(c). Figure 13(a) shows the oscillation frequency as a function of the electric field 
for Q -- 0. We can see that the three results agree very well for E upto 0.3 (recall that the Taylor 
limit according to our non-dimensionalization is near 0.451). For E larger than 0.3, the 
perturbation result becomes less accurate while the spheriodal approximation result still seems to 
be reasonably accurate. 

Unfortunately, the spheroidal approximation is not valid for B ~ 0 since the mirror symmetry 
is broken and the drop shape can no longer be captured by that of a spheroid. 

As we can see in figure 13(b) and (c), for small E, the agreement between our numerical 
calculations and the perturbation result of Feng & Beard is very good. For  relatively large E we 
believe that our results are currently the only accurate prediction of the resonance frequency of 
the fundamental mode. 

7. MODAL I N T E R A C T I O N  

One interesting result that we discovered in our frequency calculations is that under certain 
levitation conditions, the Legendre modes of different mode numbers can interact with each other 
to give rise to amplitude modulated motions. These modal interactions provide a means by which 
energy can be transferred between modes and they are very important in understanding the drop 
dynamics. 
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Table 4. Natural frequencies of the first six modes at various Q 

Q ah oh O94 CO 5 O96 
0.0 2.828 5.477 8.485 11.83 15.49 

2.806 5.443 8.441 11.78 15.43 
2n 2.739 5.339 8.307 11.62 15.25 
3rt 2.622 5.160 8.078 11.35 14.94 
41t 2.449 4.899 7.746 10.95 14.49 
5rt 2.208 4.541 7.297 10.43 13.90 
6n 1.871 4.062 6.708 9.747 13.13 
7n 1.369 3.410 5.937 8.874 12.17 
8n 0.000 2.449 4.899 7.746 10.95 

A necessary condi t ion for modal  interaction at small oscillation amplitudes is that  the natural  
frequencies o f  the coupled modes satisfy some resonance conditions. In the present problem, 
one- to- two and one-to-three resonances occur. Specifically, table 4 lists the dimensionless frequen- 
cies o f  modes  up to mode  number  6 for Q between 0.0 and 8rt and E = 0. We see that  at Q = 0, 
the frequency o f  the P4 mode  is three times that  o f  t h e / ' 2  mode.  We thus say that the P2 mode  
and the P4 mode  satisfy one-to-three resonance conditions. At  Q = 4n, the frequency o f  the P3 
mode  is twice o f  that o f  t h e / ' 2  mode.  Hence we say that  the P2 mode  and the P3 mode  satisfy 
one- to- two resonance conditions. 

The drop  dynamics  contains an infinite number  o f  modes,  and there is a huge number  o f  
addit ional  resonant  couplings. However ,  the one- to- two and the one-to-three resonances o f  the 
lower modes  are more  impor tan t  than other  types o f  resonant  interactions since the rate at which 
resonant  modes  exchange energy is faster than any others. In addit ion to the two sets o f  resonances 
noted above, Tsamopou los  & Brown (1984) found that  the P4 and P6 modes satisfy the one- to- two 
resonance condi t ion for Q = x/~ QR- 
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Our numerical simulation confirms the modal interactions predicted by Tsamopoulos  & Brown 
between the P, and P6 modes. We let the drop take an initial shape which has a P4 component  
of  amplitude 0.15. As time progresses, energy within the P4 mode is gradually transferred to the 
P6 mode. Figure 14(a) shows the amplitudes of  these two modes as functions of  time. When t is 
near 6, the magnitude of the P6 mode reaches a maximum and that of  the P, mode reaches a 
minimum. Energy then starts to be transferred back to the P4 mode again. This process repeats 
with a period much longer than the period of the P4 or P6 oscillations. 

Although exact one-to-two resonance between the P4 and P6 modes occurs only for Q = ~ QR, 
the frequency ratio between these two modes is approximately one-to-two at other values of  Q. 
Hence energy transfer between these two modes is expected to occur at these conditions also, 
perhaps to a less degree. Figure 14(b) shows the amplitudes of  these two modes for Q = 0. We see 
that the two modes indeed interact with each other. But the extent of  energy transfer is not as great 
as at exact resonance. 

The one-to-two resonance condition is also satisfied between the P2 and the P3 modes when 
Q = 4n as we can see from table 4. However, in the absence of the electric field, these two modes 
do not appear  to interact with each other. This can be understood based on the perturbation 
approach of Tsamopoulos  & Brown. One-to-two resonance is quadratic resonance, caused by 
quadratic non-linear terms in the boundary conditions governing the drop dynamics. Quadratic 
functions of  the Legendre function P2 are all orthogonal to the Legendre function e3. Hence, these 
two modes cannot interact with each other. One should not conclude, based on this fact, that odd 
modes do not interact with even modes since it is shown by Lundgren & Mansour  (1988) that the 
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Figure 12. Dependence of the free oscillation frequencies of the fundamental mode on the oscillation 
amplitude as functions of Q. (a) E =0.0, (b) E =0.1, (c) E =0.2, (d) E =0.3 and (e) E =0.4. 



DYNAMICS OF AN ELECTROSTATICALLY LEVITATED DROP 113 

2 .  

O. 

(a) Q=0.0 
3 

2 

5 l •  

1 

5 

3 a 

2.5 

2 
oh 

1.5 

1 

0.5 

o . . . .  o11 . . . .  o12 . . . .  o 1 3  . . . .  o 1 4  
E 

Co) Q = 5 . 0  

• " 0 1 5  

. . . .  o 1 1  . . . .  0 ' . 2  . . . .  o 1 3  . . . .  o 1 4  . . . .  o 1 5  
E 

(c) Q=10.0 

2 . 5  I 

Q) 2 2 

1 5 

1 

0 . 5  

o . 1  o 1 2  . . . .  o ~ 3  . . . .  o 1 4  . . . .  o 1 5  
E 

Figure 13. Dependence of the small amplitude frequencies of the fundamental mode on the electric field 
E. (a) Q = 0, (b) Q = 5.0 and (c) Q = 10.0. The square dots are from our numerical solutions and the 
lower line in (a) is from Brazier-Smith et al. (1971). Other lines are from [13] based on Feng & Beard 

(1990). 



114 z . C .  FENG and L. G. LEAL 

0 . 2  i 

0.15 r 

H I  lily I!1ii , .11/~ i~1i i, ili 
.o.o  I Fl ', i, itl 

0 1 5 ~  

I 

(a) Q = 2 ~  8 x 

'  t/t 
P4 - -  

P6 

I i i  i i  i 
I u I a n o t  t 

I I I I 
I I I I i I I I  
I I i i I  I I I 

i I i I I I 

I I I 
I I 0  I I u o P t P a I j  i I 

i I i I i / 
I I i ~ I I I 

I o I I t 
I I i ~ I i f  I 
i I i I I  

i I  , . Y i  

-0.2 n t I 
0 5 10 15 20 

time 

0.2 

0,15 

0.1 

0.05 

0 

-0.05 

-0.1 

-0.15 

b) Q=O 

Figure 14. Modal  interactions between the P4 and P6 modes. (a) Q = , ~ 3 8 1 z  and (b) Q = 0. 

"0.2 
0 5 10 15 20 

time 



DYNAMICS OF AN ELECTROSTATICALLY LEVITATED DROP 115 

© 

o~-q 

E 
< 

0.25 

0.2 

0.15 

0.1 

0.05 

-0.05 

-0.1 

I I I I I I I 

'P2_mode' 
'P3_mode' - . . . .  

l ji 
k . L . . . . - J -  q . l . . . .  "T" " '  

~ l l  I l l  I I  [ 

l t ' '  i I I 

- 0 . 1 5  I I ! I I I I 

0 5 10 15 20 25 30 35 40 

Time 

Figure 15. Modal interactions between the P2 and Pa modes for Q =4n, E = 0 . 2  and B=0.6. The 
amplitudes of both modes as functions of time are plotted. 

0.2 i i i i ! I I 

'P2_mode' - -  
'P4 mode' - . . . .  

0.15 

0.1 

" ~  0.05 

,~ , ,  ,~ . . . . . . .  ~ , ,  ~ , ^ . . . .  , . . . . . . .  
0 

-0.05 

-0.1 

-0.15 

-0.2 
0 5 10 15 ~ 25 ~ 35 40 

Time 

Figure 16. The modal amplitudes of the P2 and P4 modes as functions of time when their natural 
frequencies satisfy the one-to-two resonance condition. 



t - I  

¢J 

J 
5 10 15 20 

2 

1.8 

1.6 

1A 

1.2 

1 

0.8 

0.6 

0 A  

0.2 

0 

' U n l l ( i '  
'dr l l t l '  - . . . .  

116 z . c .  F E N G  and L. G. LEAL 

Time 

Figure 17. The upward drifts of the center of mass of the drop corresponding to different phases of the 
forcing. (a) E = 0.2 + 0.05 sin 1.0t, Q = 2~, B = 0.3 and (b) E = 0.2 + 0.05 cos 1.0t, Q = 2n and B = 0.3. 

fifth mode  and  the eighth mode do interact.  Nevertheless, we can conclude that  if the one-to- two 
resonant  in teract ion is to occur between an  odd mode and  an  even mode,  the odd mode must  be 
the slower mode.  

The above a rgument  no longer holds for an  electrostatically levitated drop. For  an electrostat- 
ically levitated drop,  the mir ror  symmetry abou t  the equator  of the drop is broken.  Hence the 
equi l ibr ium shape of  the drop conta ins  odd order  Legendre funct ions such as P3, P5 etc. The 
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Figure 20. The excitation of  the P3 mode  for E = 0.2 + 0.05 cos 4.5t, Q = 4n and B = 0.6. The forcing 
frequency is close to the natural  frequency of  the P3 mode. 
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quadratic function of P2, P3, P5 etc. will no longer be orthogonal to P3. Hence, resonant interaction 
between the P2 and P3 modes can occur. 

Indeed, our numerical simulation confirms such interaction. In fact this is the most significant 
influence associated with non-zero Bond number on the drop dynamics. Most of  the missing entries 
in table 3 of  our frequency calculation are caused by the energy transfer between the P2 and the 
P3 modes. Figure 15 shows the amplitudes of  the P2 and P3 modes as functions of  time. The drop 
is released from an initial P2 shape whose amplitude is 0.2. As time progresses, the energy from 
the P2 mode is gradually transferred to the P3 mode. Since the equilibrium shape of the drop has 
a component  in the P3 mode, in effect the P3 mode is also directly forced by the P2 mode. This 
is the reason why the P3 response has a subharmonic component  which has half the free oscillation 
frequency of  the P3 mode. 

The fact that no one-to-two resonance occurs between the P2 and P3 modes for B = 0 suggests 
that merely satisfying resonant frequency conditions does not automatically imply modal inter- 
action. In some cases, even though the two modes are coupled, however, the coupling coefficient 
can be very small. An example of  this is the one-to-three resonance between the P2 and P4 modes. 
We show in figure 16 the amplitudes of  these two modes. No energy transfer between the two modes 
can be observed. Since one-to-three resonance is due to non-linear terms at cubic order, the rate 
at which energy exchanges between the modes is expected to be much slower. However, calculations 
for initial amplitude of the P2 mode as large as 0.4 still do not show evidence of energy exchanges 
between these two modes. This seems to suggest that the non-linear coupling coefficient is very 
small. It is also possible that this coupling coefficient is zero at cubic order similar to the 
one-to-three resonance interactions in a vibrating stretched string as shown in Feng (1995). A 
theoretical calculation of this coupling coefficient would be very illuminating. However, this 
calculation requires second order perturbation procedures and is beyond the scope of this paper. 

8. D R O P  D Y N A M I C S  IN A T I M E  P E R I O D I C  E L E C T R I C  F I E L D  

In a time periodic electric field, the net force on the drop is also time periodic. I f  we use z to 
denote the vertical coordinate of  the center of  mass of  the drop, in dimensionless form, the 
following equation of motion governs the dynamics of  the center of  the mass: 

d2z 3 
EQ - B [15] 

dt 2 - 4~ 

I f  E(t)  = Eo + 6 sin cot and B = 3EoQ/4~, the equation becomes 

d2z 3 
Q6 sin cot. [16] 

dt 2 - 4~ 

The solution of this equation with stationary initial conditions is 

3Q6 3Q6 
z(t)  = ~ t - 47zco2 sin cot. [17] 

Note that in addition to an oscillating part, the center of  mass has a non-zero upward drift velocity 
even though the net periodic force on the drop has a zero mean. However, if E(t)  = Eo + 6 cos cot, 
the drift term disappears. These two cases are shown in figure 17 for Q = 12.56, B = 0.6. Note 
that due to small numerical errors, the drop still experiences a slow upward drift for 
E(t)  = Eo + 6 cos cot as we have explained in section 4. But it is at a much slower rate. Since we 
are mainly interested in drop shape oscillations, the following calculations are done for 
E(t)  = 0.2 + 0.05 cos cot. 

Based on [3], the electrostatic forces acting on the surface of  a spherical drop are proportional 
to the square of  E(t). I f  we let 

E(t)  = Eo + 6 cos cot 

then 

E(t)  2 = E~ + 2Eo6 cos cot + 62 cos 2 ogt 
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Thus if E0 = 0, the drop is subjected to a periodic forcing of frequency 2co. If  E ¢ 0, the drop is 
subjected to the sum of  periodic forcing of frequency co and 2co, respectively. Therefore, if either 
co or 2o) is close to the natural frequency of  the fundamental mode, we expect drop oscillations 
of  large amplitude. On the other hand, if 6 is very small and E0 :/: 0, the electrostatic forcing due 
to the term 62 cos 2 cot may be negligible. Our numerical investigation will be mainly focused on this 
latter case. 

Since the time variation of the electric field is small, 6 = 0.05, the transient motion of  the drop 
is very similar to that of a single degree of freedom oscillator. If the forcing frequency co is away 
from the resonant frequency of  the fundamental mode, the drop motion contains two frequency 
components. One is at the forcing frequency and the other is at the natural frequency. Hence, 
superposition of these two frequency components will give time modulated motion. This is shown 
in figure 18 for E = 0.2 + 0.05 cos 2.5t, B = 0.6, and Q = 4n, where the half length of  the symmetry 
axis is plotted against the time. In reality, the viscous effects in the fluid would damp out the 
component at the natural frequency and the steady state motion would be periodic at the forcing 
frequency. Since viscous effects are not rigorously accounted for, we do not carry out the long time 
integration necessary to reach the steady state periodic motions. 

When the forcing frequency is close to the natural frequency of the fundamental mode, the 
amplitude of  the fundamental mode will grow as a linear function of time until the amplitude is 
so large that the non-linearity is having an effect. We have seen in the previous section that 
non-linearity causes coupling between the P2 and P3 modes. We show in figure 19 the amplitudes 
of  these two modes for E = 0.2 + 0.05 cos 2.5t, B = 0.6, and Q = 4re. The energy transfer between 
these two modes leads to significant amplitude of the P3 mode. 

To decide if the time dependent electric field can excite modes other than the fundamental one, 
we have done simulations at frequencies close to the resonant frequencies of P3 and P4 modes. We 
find that the amplitude of the P4 mode remains small even at the frequency where resonance is 
expected. At frequencies close to the resonant frequency of the P3 mode, we do notice a significant 
increase of  the P3 amplitude. The amplitudes of the/ '2  and P3 modes are shown in figure 20 as 
functions of time. 

9. D I S C U S S I O N  AND S U M M A R Y  

The boundary element method has been used to simulate the dynamics of  an electrostatically 
levitated drop. The dependence of the equilibrium shape of the drop upon the levitation parameters 
is determined. It is found that a combination of  relatively large electric charge and small electric 
field give the least distortion of the drop shape. For large electric charge and strong electric field, 
no equilibrium of the drop shape exists. This limits the maximum Bond number of a levitated drop 
to be less than 0.9. 

A comprehensive study of  the dependence of the fundamental shape oscillation frequency upon 
the levitation parameters has produced results which at small values of the electric field agree very 
accurately with existing analytical results. However, the numerical results are also valid at large 
values of  E and Q. Hence, they provide an important guide for experimental work. The frequency 
of  the fundamental mode is also dependent on the oscillation amplitude. We find that a quadratic 
relationship accurately describes this dependence. For all levitation parameters, the non-linearity 
is analogous to an oscillator with softening nonqinearity. 

The presence of  the electric charge and electric field influences the nonqinear mode interaction. 
For  a charged drop, an exact one-to-two resonance between the P4 and P6 modes is possible. More 
importantly, however, the P2 and P3 modes can undergo one-to-two mode interaction for n o n - z e r o  

Bond numbers. 
Our investigation of  drop dynamics in a time-dependent electric field is limited to cases where 

the variation of  the electric field is small compared with the constant part of the electric field. For 
this case, we find that the drop response is very analogous to that of an oscillator. At frequencies 
away from the natural frequency, the drop response is very small. When the forcing frequency is 
near the natural frequency of the P3 mode, the P3 mode can become excited due to the fact that 
the equilibrium shape of the drop does not have the mirror symmetry about the equator. Even for 
this case, the response can still be regarded as small. Large amplitude oscillations of  the 
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fundamental mode can be excited if the forcing frequency is close to the natural frequency of the 
fundamental mode. When this happens, energy transfer to higher modes, including the P3 mode, 
takes place. Due to this energy transfer to higher modes, a rigorous treatment of viscous effects 
is necessary before we carry out further simulations of drop dynamics in a time dependent electric 
field. 
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